Constructing Accurate Fuzzy Rule-Based Classification Systems Using Apriori Principles and Rule-Weighting
نویسندگان
چکیده
A fuzzy rule-based classification system (FRBCS) is one of the most popular approaches used in pattern classification problems. One advantage of a fuzzy rule-based system is its interpretability. However, we're faced with some challenges when generating the rule-base. In high dimensional problems, we can not generate every possible rule with respect to all antecedent combinations. In this paper, by making the use of some data mining concepts, we propose a method for rule generation, which can result in a rule-base containing rules of different lengths. As the next phase, we use rule-weight as a simple mechanism to tune the classifier and propose a new method of ruleweight specification for this purpose. Through computer simulations on some data sets from UCI repository, we show that the proposed scheme achieves better prediction accuracy compared with other fuzzy and non-fuzzy rule-based classification systems proposed in the past.
منابع مشابه
A Margin-based Model with a Fast Local Searchnewline for Rule Weighting and Reduction in Fuzzynewline Rule-based Classification Systems
Fuzzy Rule-Based Classification Systems (FRBCS) are highly investigated by researchers due to their noise-stability and interpretability. Unfortunately, generating a rule-base which is sufficiently both accurate and interpretable, is a hard process. Rule weighting is one of the approaches to improve the accuracy of a pre-generated rule-base without modifying the original rules. Most of the pro...
متن کاملA QUADRATIC MARGIN-BASED MODEL FOR WEIGHTING FUZZY CLASSIFICATION RULES INSPIRED BY SUPPORT VECTOR MACHINES
Recently, tuning the weights of the rules in Fuzzy Rule-Base Classification Systems is researched in order to improve the accuracy of classification. In this paper, a margin-based optimization model, inspired by Support Vector Machine classifiers, is proposed to compute these fuzzy rule weights. This approach not only considers both accuracy and generalization criteria in a single objective fu...
متن کاملEntropy Based Fuzzy Rule Weighting for Hierarchical Intrusion Detection
Predicting different behaviors in computer networks is the subject of many data mining researches. Providing a balanced Intrusion Detection System (IDS) that directly addresses the trade-off between the ability to detect new attack types and providing low false detection rate is a fundamental challenge. Many of the proposed methods perform well in one of the two aspects, and concentrate on a su...
متن کاملFuzzy Apriori Rule Extraction Using Multi-Objective Particle Swarm Optimization: The Case of Credit Scoring
There are many methods introduced to solve the credit scoring problem such as support vector machines, neural networks and rule based classifiers. Rule bases are more favourite in credit decision making because of their ability to explicitly distinguish between good and bad applicants.In this paper multi-objective particle swarm is applied to optimize fuzzy apriori rule base in credit scoring. ...
متن کاملUsing Support Vector Machine in Fuzzy Association Rule Mining
Fuzzy rule based classification systems is one of the most popular in pattern classification problems. The rules in the fuzzy models can be weighted to show the importance of generated rules where all attributes in the antecedent part of the rules have been usually weighted equally. Whereas the contributed attributes in a fuzzy model may have different influences on the decision making, a new m...
متن کامل